
113 Class Problems: Finitely Generated Groups

1. Consider the group (C \ {0},×).

(a) Prove that for any m ∈ N, there exists a cyclic subgroup of C \ {0} of size m.

(b) Prove that this subgroup is the unique such subgroup.

(c) List all possible single set generators for this subgroup.

Solution:
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2. Prove that (Q,+) is not finitely generated.

Solution:

3. Let (G, ∗) be a group and x ∈ G such that G = gp({x}). Let H be a second group and
φ,ψ : G → H be two homomorphisms. Recall that φ = ψ means that φ(g) = ψ(g) for
all g ∈ G. Prove the following:

φ = ψ ⇐⇒ φ(x) = ψ(x).

Solution:
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